

Sherp UTV – Surface Transport in Greenland

Reducing Dependency on Air Operations

- Air operations limited by weather, ground time and fuel
- These constraints define access windows
- Surface operations paced by research – not flight logistics

Environmental Footprint

- Low fuel consumption per km
- Lower carbon footprint than air operations
- Minimal ground pressure on ice and tundra
- Fewer flights – simpler logistics chains

Range & Autonomy

- >1000 km operational range without resupply
- No dependency on fuel depots or ground support
- Enables multi-day operations far from infrastructure

A Mobile Research Camp

- Crew can live and sleep inside the vehicle
- Protected from weather and wildlife
- Safe base for rest, planning and data handling
- Reduces need for tents and separate camp logistics

Where SHERP Fits

- When air access is unavailable or inefficient
- When terrain excludes trucks and heavy platforms
- When operations require time, presence and repetition
- Enables researchers to stay in the field – not just reach it
- *Designed as part of a broader landmobility ecosystem*

Use Cases & Closing

- Mobile field camps
- Instrument deployment and servicing
- Ground-truthing & reconnaissance
- Permafrost & environmental studies
- SHERP complements air and larger platforms

Sherp UTV – Surface Transport in Greenland

Henrik Lassen, Arctic Capacity
henrik@arctic-capacity.dk
www.arctic-capacity.gl
+45 31 15 16 00